

New Mexico Desalination Association

Economics of Unconventional Water

Deborah Dixon, P.E. and Mike Hightower, P.E. New Water for New Mexico Conference October 20, 2022

EPA National Water Reuse Action Plan

- Focus on fit-for-purpose treatment and reuse of waste water
- In five major areas:
 - Thermo-electric cooling water
 - Agricultural waste water
 - Municipal waste water
 - Produced water
 - Storm water
- NM leading collaboration (NM, AZ, TX, WY, OK, CO, PA, KS) on produced water treatment research and implementation

Requires some level of desalination for reuse

Answers to These Questions:

- Is there adequate supply of brackish water to make it sustainable?
- Is desalination too expensive?
- Are systems mobile and flexible enough to meet municipal, industrial, commercial, and agricultural needs?
- What about the concentrate?
- Is funding available?
- Is desalination economically feasible?

Desalination Is Growing

(JONES ET AL, SCIENCE OF THE TOTAL ENVIRONMENT, 2019)

Desalination in U.S.

- Wastewater reuse 15% per year
- Desalination ~ 10% annual growth rate
- Desalination plants in the US (2017)
 - FL 167
 - CA 58
 - TX 53
 - AZ 10
 - CO 10

Facilities referenced here are municipal desalination plants with the capacity of 25,000 or more gallons per day of water. Older facilities included in this count may no longer be operational.

Source: U.S. Bureau of Reclamation • Get the data • Created with Datawrapper

"NEW WATER FOR NEW MEXICO"

(Based on Water Reuse 2007, Mickley 2003)

Desalination in New Mexico

- 5 in NM are using desalination (municipal and power generation applications)
- Most rural supplies in NM are individual wells
- NM is behind other states
- Most major freshwater groundwater aquifers in NM are over-stressed
- Many brackish aquifers with 300 yr supply
- Future economic growth will require desal

Many NM Ground Water Basins Contain Zones of Brackish Water that are Easily Recoverable

7

NM Brackish and Saline Waters – Significant Resources

Ο

Desal vs. Fresh Water Importation – El Paso Example

El Paso Water is setting its sights about 80 miles east to Dell City.

The Bone Spring-Victorio Peak aquifer underneath New Mexico is one of the few West Texas aquifers that's consistently replenished by rainfall.

"NEW WATER FOR NEW MEXICO"

New water sources are more expensive

Capital Cost				Operation & Maintenance Cost
Direct capital costs	_			Fixed operation & maintenance cost
Installed membrane equipment				Labor
Additional process items	Water treatment plant construction cost	oject construction cost	pital cost	Administrative
Building & structures				Equipment and membrane replacement
Electric utilities & switchgear				
Finished water storage				Variable operation & maintenance cost
High service pumping				Power
Site development				Chemicals
Miscelleneous plant items				Other costs (such as cartrdge filters)
Supply intake/wells	_		1 ca	
Raw water pipelines		Tota	Tota	
Finished water pipelines				
Waste concentrate/residual dispos	al			
Land	_			
Indirect capital costs				
Legal, administrative				
Interest				
Contingency				
			, 	

Figure 1 - Key factors for capital and operation and maintenance costs of a desalination facility (Bergman, 2012).

Cost Differences Between Varying Types of Water Supply

Approximate Cost of Water in California, 2015

The approximate cost to operate alternative water source facilities per acre foot of water.

All values are rounded to two significant figures. Costs reflect 2015 dollars. Low and high costs represent the 25th and 75th percentile of the estimated cost range. Values represent both large and small facility types. An acre-foot is the amount of water required to cover an acre one foot deep.

Source: APM Research Lab analysis of Pacific Institute data • Get the data • Created with Datawrapper

Cost Differences Between Desal and Fresh Water

(EWRI Hightower 2018)

"NEW WATER FOR NEW MEXICO"

Trends in Permian Basin PW Disposal and Treatment Costs

Permian Produced Water Disposal Costs Have Doubled every 5 Years

Produced Water Value – Quantified ESG Benefits with Reuse

- Developed a socio-economicecologic impact model with Sandia funded by DOE
- Quantitative ESG metrics using
 - Produced water data portal data
 - Treatment cost/performance model
 - Health and safety risk model
 - Provides, economic, social, environmental impacts/benefits for selected application and location
- Need to expand to the San Juan Basin

Cost/Benefit	Range of Values	
Price of Oil (WTI)	\$55.00	
Price of Recycled Water per barrel	\$0.50 - \$7.00 \$20 - \$25	
Marginal Cost of Production & Taxes		
Marginal Cost of Water Disposal per barrel	\$0.50 - \$2.25	
Marginal Cost of Transportation	\$0.00 - \$9.00	
Marginal Cost of Recycling	\$1.00 - \$16.00	
Marginal Private Value of Recycled Water	\$0.25 - \$1.75	
Marginal Social Value of Recycled Water	\$0.48 - \$51.24	

Analyses suggest economic benefits of \$500 M to \$1 B per county using treated produced water

Desalination Scalable – Single Well to Community Scale

Alamogordo 1 MGD

desal system

250,000 gpd desal container

BGNDRF 15,000 gpd desal system **Blending is often** used to double capacity

"NEW WATER FOR NEW MEXICO"

Concentrate disposal options

Alamogordo 1-MGD evaporation pond

Deep well injection

Concentrate is commonly disposed of through one of five practices:

1.Discharge to waste water treatment plant or waste water lagoons (dilution)

- 2.Surface water discharge (dilution)
- 3.Irrigation (if low concentration)
- 4.Deep well injection
- 5.Evaporation ponds and/or enhanced evaporation (solids) www.amtaorg.com

(solids)

W W W . a m t a O r (FS-4) Feb. 2018

Selective irrigation

Constructed salt marsh wetlands

Funding of Unconventional Water

- EPA Bipartisan Infrastructure Law
 - \$26 million to NMED &NMFA

NM Infrastructure Fund/Drinking Water State Revolving Fund capitalization grant = \$17,992,00

Economics of Unconventional Water

• Questions?